- World Organisation for Animal Health (WOAH), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, twelfth edition 2023 – Chapter 3.3.4. Avian influenza (including infection with high pathogenicity avian influenza viruses) (version adopted in May 2021). Available at: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/ (accessed in October 2023).
- World Organisation for Animal Health (WOAH), Avian Influenza. Available at: https://www.woah.org/en/disease/avian-influenza/ (accessed in October 2023).
- European Food Safety Authority (EFSA). Avian influenza. Available at: https://www.efsa.europa.eu/en/topics/topic/avian-influenza (accessed in October 2023).
- European Food Safety Authority (EFSA), Scientific report: Avian influenza overview December 2022 – March 2023. Available at: https://www.efsa.europa.eu/en/efsajournal/pub/7917 (accessed in October 2023).
- International Committee on Taxonomy of Viruses. Orthomyxoviridae. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae (accessed in October 2023).
- Shepard, S.S.; Davis, C.T.; Bahl, J.; Rivailler, P.; York, I.A.; Donis, R.O. LABEL: Fast and Accurate Lineage Assignment with Assessment of H5N1 and H9N2 Influenza A Hemagglutinins. PLoS ONE2014, 9, e86921. [Google Scholar] [CrossRef][Green Version]
- Gao, Q.; Chou, Y.-Y.; Doğanay, S.; Vafabakhsh, R.; Ha, T.; Palese, P. The Influenza A Virus PB2, PA, NP, and M Segments Play a Pivotal Role during Genome Packaging. Virol.2012, 86, 7043–7051. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Beerens, N.; Heutink, R.; Harders, F.; Bossers, A.; Koch, G.; Peeters, B. Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. Virol. 2020, 94, 94. [Google Scholar] [CrossRef] [PubMed]
- Dadonaite, B.; Gilbertson, B.; Knight, M.; Trifkovic, S.; Rockman, S.; Laederach, A.; E Brown, L.; Fodor, E.; Bauer, D.L.V. The structure of the influenza A virus genome. Microbiol.2019, 4, 1781–1789. [Google Scholar] [CrossRef]
- Le Sage, V.; Kanarek, J.P.; Snyder, D.J.; Cooper, V.S.; Lakdawala, S.S.; Lee, N. Mapping of Influenza Virus RNA-RNA Interactions Reveals a Flexible Network. Cell Rep.2020, 31, 107823. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses2021, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Oprisan, G.; Coste, H.; Lupulescu, E.; Oprişoreanu, A.M.; Szmal, C.; Onita, I.; Popovici, N.; Ionescu, L.E.; Bicheru, S.; Enache, N.; et al. Molecular analysis of the first avian influenza H5N1 isolates from fowl in Romania. Arch. Microbiol. Immunol.2008, 65, 79–82. [Google Scholar]
- Avian Influenza in Europe: Update of the IZSV-Istituto Zooprofilattico Sperimentale Delle Venezie. Available online: https://www.izsvenezie.com/reference-laboratories/avian-influenza-newcastle-disease/europe-update (accessed in October 2023).
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Rev.1992, 56, 152–179. [Google Scholar] [CrossRef] [PubMed]
- Azeem, S., Sato, Y., Guo, B., Wolc, A., Kim, H., Hoang, H., … & Yoon, K. J. (2022). Evaluation of Feedstuffs as a Potential Carrier of Avian Influenza Virus between Feed Mills and Poultry Farms. Pathogens, 2022, 11(7), 755. [Google Scholar]
- Figueroa, A.; Derksen, T.; Biswas, S.; Nazmi, A.; Rejmanek, D.; Crossley, B.; Pandey, P.; Gallardo, R.A. Persistence of low and highly pathogenic avian influenza virus in reused poultry litter, effects of litter amendment use, and composting temperatures. J. Appl. Poult. Res.2020, 100096. [Google Scholar] [CrossRef]
- Shahid, M.A.; Abubakar, M.; Hameed, S.; Hassan, S. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival. J.2009, 6, 38. [Google Scholar] [CrossRef][Green Version]
- Nazir, J.; Haumacher, R.; Ike, A.C.; Marschang, R.E. Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat. Environ. Microbiol.2011, 77, 4981–4985. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Irwin, C.K.; Yoon, K.J.; Wang, C.; Hoff, S.J.; Zimmerman, J.J.; Denagamage, T.; O’Connor, A.M. Using the Systematic Review Methodology To Evaluate Factors That Influence the Persistence of Influenza Virus in Environmental Matrices. Environ. Microbiol.2010, 77, 1049–1060. [Google Scholar] [CrossRef][Green Version]
- Martin, G.; Becker, D.J.; Plowright, R.K. Environmental persistence of influenza H5N1 is driven by temperature and salinity: Insights from a Bayesian meta-analysis. Ecol. Evol.2018, 6, 131. [Google Scholar] [CrossRef][Green Version]
- Dee, N.; Havas, K.; Shah, A.; Singrey, A.; Spronk, G.; Niederwerder, M.; Nelson, E.; Dee, S. Evaluating the effect of temperature on viral survival in plant-based feed during storage. Emerg. Dis.2022, 1–6. [Google Scholar] [CrossRef]
- Lebarbenchon, C.; Feare, C.J.; Renaud, F.; Ujvari, B.; Gauthier-Clerc, M. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems. Infect. Dis.2010, 16, 1057–1062. [Google Scholar] [CrossRef]
- Trudeau, M.P.; Verma, H.; Urriola, P.E.; Sampedro, F.; Shurson, G.C.; Goyal, S.M. Survival of porcine epidemic diarrhea virus (PEDV) in thermally treated feed ingredients and on surfaces. Porcine Health Manag.2017, 3, 17. [Google Scholar] [CrossRef]
- Niederwerder, M.C.; Stoian, A.M.M.; Rowland, R.R.R.; Dritz, S.S.; Petrovan, V.; Constance, L.A.; Gebhardt, J.T.; Olcha, M.; Jones, C.K.; Woodworth, J.C.; et al. Infectious dose of African swine fever virus when consumed naturally in liquid or feed. Infect. Dis.2019, 25, 891–897. [Google Scholar] [CrossRef]